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Human-induced ecological change in the open oceans appears to be accelerat-

ing. Fisheries, climate change and elevated nutrient inputs are variously

blamed, at least in part, for altering oceanic ecosystems. Yet it is challenging

to assess the extent of anthropogenic change in the open oceans, where historical

records of ecological conditions are sparse, and the geographical scale is

immense. We developed millennial-scale amino acid nitrogen isotope records

preserved in ancient animal remains to understand changes in food web struc-

ture and nutrient regimes in the oceanic realm of the North Pacific Ocean (NPO).

Our millennial-scale isotope records of amino acids in bone collagen in a wide-

ranging oceanic seabird, the Hawaiian petrel (Pterodroma sandwichensis),
showed that trophic level declined over time. The amino acid records do not

support a broad-scale increase in nitrogen fixation in the North Pacific subtrop-

ical gyre, rejecting an earlier interpretation based on bulk and amino acid

specific d15N chronologies for Hawaiian deep-sea corals and bulk d15N chron-

ologies for the Hawaiian petrel. Rather, our work suggests that the food web

structure in the NPO has shifted at a broad geographical scale, a phenomenon

potentially related to industrial fishing.
1. Introduction
Anthropogenic impacts are an increasing threat to marine ecosystems. Warming

of marine water alters ocean circulation, contributes to sea-level rise, and has

unmistakable impacts on coastal coral reef communities [1]. Rising inorganic

nitrogen from rivers, nitrogen fixation, and nitrogen deposition impart eutrophi-

cation, promote hypoxia, and alter ecological community structure [2]. The

collapse of coastal fisheries is also well known [3]. While anthropogenic disturb-

ance in coastal regions is obvious, human influences on the open oceans are

more insidious. Rising temperatures and nutrient-driven increases in primary

production are recognized in the open oceans [2,4,5]. Higher in the oceanic

food web, fisheries contribute to depletion of top predators and cetaceans,

and in the Central Pacific alone, annual catch is ca 1.4 million tonnes [6–8].

While there may be a temptation to consider oceanic food webs, especially in

the deep ocean, as relatively insulated from human impacts, this is probably a

misperception considering that loss of coastal marine resources and technologi-

cal advances compel exploitation far beyond continental shelves [9]. Even so,

evaluating the state of ecosystems is difficult without historical records of

change, a formidable challenge for the vast oceanic realm.
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The legacy of climate and certain human impacts is

recorded in the ratio of 15N/14N in bulk tissues (d15Nb) and

amino acids (d15Na) of marine organisms [10,11]. Nitrogen

added to the base of the food web by nitrogen fixing diazo-

trophs is distinguished by a uniquely low d15N of about 0‰,

compared with 5–6‰ for marine nitrate [4,12,13]. Such isoto-

pic differences in source nitrogen are faithfully passed on to

organisms higher in the food web, but with approximately a

3‰ increase in d15Nb per trophic level [14]. While d15Nb is com-

monly used to study nitrogen cycling and food web structure,

d15Nb is hard to interpret because it is influenced by source

nitrogen and trophic effects.

The difficulty in interpreting d15Nb underlies a major dis-

agreement between Wiley et al. [15] and Sherwood et al. [11]

regarding whether trophic-level shifts or, instead, changes in

source nitrogen have influenced food webs in the oceanic

realm of the North Pacific Ocean (NPO). Wiley et al. [15] and

Sherwood et al. [11] built millennial-scale nitrogen isotope

chronologies, each covering a different geographical region

of the NPO and using different study organisms. These

two studies drew opposing conclusions regarding whether

trophic-level shifts or changes in source nitrogen at the base of

the food web have influenced food webs in the NPO. To address

this controversy, we developed amino-acid-specific d15N chron-

ologies from two breeding populations of the Hawaiian petrel

(Pterodroma sandwichensis), one from the island of Hawaii and

the other from Maui.
2. Material and methods
(a) Sample acquisition
Hawaiian petrel bones are from carcasses salvaged from Haleakala

National Park (Maui) and Hawaii Volcanoes National Park

(Hawaii) between 2001 and 2010 [15]. Subfossil bones from archae-

ological and palaeontological sites on Hawaii and Maui were also

sampled [15]. While adult and hatch year birds had similar d15Nb

values and are included in our Hawaii d15Na dataset, owing to the

disparity between adult and hatch year bird d15Nb values on the

island of Maui, only adult Maui petrels were included in our

d15Na analyses.

(b) Protein isolation and radiocarbon dating
Gelatin from subfossil bones was previously prepared for radiocar-

bon and isotope analysis [15]. Radiocarbon dating, reported

previously, was conducted at the accelerator mass spectrometry

(AMS) facility at the University of California, Irvine (W. M. Keck

Carbon Cycle AMS Laboratory) [15]. As described in Wiley et al.
[15], conventional radiocarbon ages were calibrated using the pro-

gramme CALIB 6.0 and assigned to time bins based on their median

probability dates.

(c) Sample sizes
Bone samples derive from salvaged carcasses and palaeontologi-

cal and archaeological bones. Samples fall within previously

described time bins that mark development of the human popu-

lation of the Hawaiian Islands: prehuman period (before human

colonization of Hawaii; less than 1000 CE or more than 950 yr

BP), foundation period (Polynesian colonization, small human

population size; 1000–1400 CE; 550–950 yr BP), expansion

period (increasing human population size; 1400–1800 CE; 150–

550 yr BP) and the modern period (onset of industrialized fishing

in the NPO; 1950–2010 CE) [15,16].

Samples from the island of Hawaii were chosen by random-

ly selecting samples within each of the three time periods
(prehuman, late expansion, modern) that were within 1 standard

deviation of the sample time-binned mean of our d15Nb data.

This limited the influence of outliers. However, few samples

were available from Maui. Consequently, all or the majority of

the available samples from Maui were analysed. Sample sizes

for our time bins were: modern Hawaii (n ¼ 8), expansion

Hawaii (n ¼ 8), prehuman Hawaii (n ¼ 5), modern Maui (n ¼ 7),

foundation Maui (n ¼ 5), prehuman Maui (n ¼ 7).

(d) d15N amino acid analysis and estimates of trophic-
level decline

Amino-acid-specific nitrogen isotope analyses were conducted at

the Japan Agency for Marine-Earth Science and Technology. Data

are expressed as d15Na ¼ [(15N/14Nsample/
15N/14Nstandard) 2 1] �

103 relative to the standard atmospheric N2 and units are per mil

(‰). d15N analysis of N-pivaloyl/isopropyl (PV/iPR) amino acid

derivatives of gelatin (ca 0.1 mg) hydrolyzates (12 N HCl, 1108C,

12 h) was performed as described by Chikaraishi et al. [17]. Deriva-

tives were analysed on a 6890N GC (Agilent Technologies, USA)

fitted with a HP Ultra-2 capillary column (50 m, 0.32 mm i.d.,

0.52 mm film thickness) in line with oxidation (9508C) and

reduction (5508C) furnaces interfaced to a Delta Plus XP IRMS

(Thermo Fisher Scientific, Bremen, Germany). Accuracy was evalu-

ated by analysis of an external standard consisting of PV/iPr

derivatives of nine isotopically characterized amino acids (alanine,

glycine, leucine, norleucine, aspartic acid, methionine, glutamic

acid, phenylalanine and hydroxyproline) [18]. Reproducibility

was better than 0.5‰.

The trophic proxy, d15NGlu– Phe, was used as an indicator of

trophic level. In addition, trophic position was calculated using a

multi-TDF model [19], necessitated by the observation that the

trophic discrimination factor for birds (3.6‰) is lower than that

of aquatic and other lower trophic level organisms (7.6‰)

[17,19,20]. The model is: TP ¼ (d15NGlu 2 d15NPhe 2 TDFbird 2

3.4)/TDFtypical þ 2, where the trophic discrimination factor (TDF)

for birds (TDFbird) is 3.6‰, and TDFtypical is the TDF for lower

trophic levels ¼ 7.6. We also evaluated our results with a single

step model using a TDF ¼ 7.6‰ but, as illustrated in the electronic

supplementary material, table S1, this did not alter our conclusions

regarding changes in trophic level between ancient and modern

time periods.

(e) Diet analysis
Analyses were conducted on regurgitations collected from

12 Hawaiian petrels from Maui in 2007 and 2009. Teleost

fishes, primarily lantern fish and flying fish, and ommastrephid

squid comprised over 90% of the items in the diet, similar to the

findings of Simons [21].

( f ) Statistical approach
The population means (and variance) for d15NPhe and d15NGlu 2

d15NPhe for each time period in each location were estimated

using analysis of variance (ANOVA). Data from Hawaii and

Maui were analysed separately as there is no reason to believe

that changes in d15NPhe and d15NGlu 2 d15NPhe are the same

across time periods in the two locations, especially, because

late expansion data (only available from Hawaii) and foundation

data (only available from Maui) represent different time periods.

Parameter values in the ANOVAs were estimated using a Bayes-

ian approach, which produces unbiased estimates at small

sample sizes and allows for the estimation of explicit probability

statements [22]. Specifically, we were able to calculate: (i) the

probability that d15NPhe decreased from ancient to modern

time periods, and (ii) the probability that d15NGlu 2 d15NPhe (i.e.

trophic position) decreased over the same time period. Average
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time-specific trophic position was calculated as a derived quan-

tity using d15NGlu 2 d15NPhe values according to the formula in

the electronic supplementary material, table S1.

Separate ANOVAs were run on d15NPhe and d15NGlu 2

d15NPhe for both Hawaii and Maui, estimating mean values of

each quantity in the three time periods (prehuman, late expansion

or foundation, modern). Equal variances among time periods

within each analysis were assumed, and parameter values for

each ANOVA were obtained using Markov chain Monte Carlo

(MCMC) executed with the programs R [23] and WINBUGS [24].

Vague priors were used for each of the means (normal distri-

butions centred around 0 with a variance of 1000) and the

variance (uniform distribution between 0 and 100). Three chains

each for 100 000 iterations and a burn in of 10 000 were used.

The remaining samples were thinned by saving only every third

value, thus creating a posterior distribution for each parameter

that consisted of 90 000 independent values. The derived probabil-

ities (e.g. decreases in d15NPhe and d15NGlu 2 d15NPhe from ancient

to modern times) were calculated by subtracting the estimated

mean values in the early time period (prehuman and late expan-

sion or foundation) from the values in the modern time period

for each iteration of the MCMC. The probabilities were then calcu-

lated as the proportion of those subtracted values that are positive

(electronic supplementary material, table S1).
3. Results and discussion
Wiley et al. [15] and Sherwood et al. [11] built millennial-scale

nitrogen isotope chronologies, each covering a different geo-

graphical region of the NPO. In a study of a wide-ranging

oceanic predator, the Hawaiian petrel (figure 1), Wiley et al.
[15] found a species-wide decline in d15Nb in a millennial-

scale time series of modern and ancient bones assembled

from modern ornithological, archaeological and palaeontolo-

gical collections, and circumscribed the timing of the decline

to the past 100 years. This trend was interpreted as evidence

of a significant species-wide decline in trophic level, most

likely associated with industrial fishing. Sherwood et al. [11]

found a similar decline in d15Nb values of three long-lived,

deep-sea corals (Kulamanamana haumeaae) in the vicinity of

the main Hawaiian Islands (figure 1) and interpreted this

trend as evidence of a temporal increase in nitrogen fixation.

Based on the rough similarity in temporal patterns in the two
studies, Sherwood et al. [11] reinterpreted the Hawaiian petrel

d15Nb data as reflecting an increase in nitrogen fixation in the

North Pacific subtropical gyre, and argued against a trophic

effect associated with fishing, thus laying down a gauntlet

for all d15Nb studies that have claimed to show trophic effects

of marine fishing [10,28,29].

To bolster their d15Nb dataset, Sherwood et al. [11] also ana-

lysed d15Na from two corals, yielding one record from about

700 yr BP (AD 1300) to present and another from about

800 yr BP (AD 1400) to 165 yr BP (AD 1850). The d15Na data

offer a means to disentangle the signal of source nitrogen and

trophic position from a single sample [17]. Certain amino

acids such as phenylalanine are principally influenced by

changes in source nitrogen, whereas others such as glutamic

acid undergo significant increases in d15N with each trophic

step. Further, the difference between the d15N values of

glutamic acid and phenylalanine, d15NGlu 2 d15NPhe, is a

proxy for trophic position. Data from the coral specimen that

dated from 700 yr BP to present showed a decline in average

d15N of both source and trophic amino acids, and no change

in d15NGlu 2 d15NPhe, supporting the interpretation that the

d15Nb coral data reflect a shift in source nitrogen. Yet, the

sinking particles that support the deep-sea corals and the sur-

face particles at the base of the Hawaiian petrel food web

differ substantially in d15Nb [13,30], and no Hawaiian petrel

d15Na data were available to support Sherwood et al.’s [11]

interpretation that a temporal trend in nitrogen fixation was

widespread across the North Pacific subtropical gyre.

In an independent laboratory from the original study, we

generated two separate d15Na chronologies, representing

Hawaiian petrel populations from the islands of Hawaii

and Maui, which are known to be genetically distinct and

are known to differ in foraging habits [15,31]. We compared

the d15NPhe and d15NGlu2d15NPhe of Hawaiian petrel col-

lagen from prehuman, archaeological and modern time

periods from Hawaii and Maui using a Bayesian ANOVA,

which allowed us to explicitly quantify the probability of

changes in d15N between ancient and modern time periods

(figure 2 and the electronic supplementary material, table

S2). We also calculated point estimates (means) and 95%

credible intervals for both quantities in each time period

(electronic supplementary material, table S3). The datasets
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from each island were analysed separately with strikingly

similar results. Between Hawaii’s late expansion or prehu-

man and modern time periods and Maui’s foundation or

prehuman and modern time period, the probability that

d15NPhe declined was less than or equal to 0.13 for both islands

and the probability that d15NGlu2d15NPhe, and trophic position

declined was more than 0.99 for both islands. While d15NPhe

provides no evidence that a change in nutrient regime (e.g.

an increase in nitrogen fixation) influenced the Hawaiian

petrel food web, declines in both d15NGlu and d15NGlu2

d15NPhe are consistent with a decline in trophic position

between prehuman and modern periods of 0.4 and 0.3

for the Hawaiian petrel population on Hawaii and Maui,

respectively (electronic supplementary material, table S1).

We explored reasons for the disparity in d15NPhe trends

between the coral and petrel data, looking for mechanisms

that could explain the differences between the two datasets.

The coral data are derived from waters near Hawaii where

nitrogen fixation rates are elevated and the nitrogen to phos-

phorus ratio (N : P) is greater than the expected Redfield

stoichiometry of 16 : 1 [4,5]. This results in elevated values

for the N* parameter (nitrogen concentration in excess or def-

icit to phosphorous relative to Redfield stoichiometry N* ¼

N 2 16P þ 2.9 mmol kg21) [27]. Elsewhere, anthropogenic

atmospheric nitrogen deposition is the major cause of tem-

poral increases in N : P [5]. Even so, large areas of the NPO

are characterized by a nitrogen deficit and negative N*

values (figure 1). The deep-sea corals studied by Sherwood

et al. [11] are centred in waters characterized by neutral to

positive N* values. By contrast, Hawaiian petrels obtain

source nitrogen from vast expanses of the NPO within their

foraging range that include regions where N* is negative,
indicative of net denitrification (figure 1). Temporal trends

in deep-sea coral d15NPhe could reflect an increase in nitrogen

fixation in water near Hawaii, just as posited by Sherwood

et al. [11], whereas the absence of a shift in the d15NPhe of

Hawaiian petrels is indicative of the absence of a pronoun-

ced increase in nitrogen fixation or atmospheric nitrogen

deposition across their broad foraging range. Thus, the dis-

parity between coral and petrel d15NPhe trends is not

surprising, leading us to ask: what is the significance of the

d15NGlu – Phe decline in the Hawaiian petrel?

Our new data are consistent with our earlier claim that the

Hawaiian petrel experienced a trophic shift, a phenomenon

that may have broad implications for the NPO. The decrease

in d15NGlu– Phe implies a trophic-level decline but could also

reflect a change in diet quality (e.g. variation in protein, fat

or carbohydrate content) [19,32]. Considering that our diet

analyses and those of others show that Hawaiian petrels are

top predators that feed on purely proteinaceous diets of tele-

ost fishes and squid [21], any changes in protein content are

likely to be inconsequential. A decline in magnitude of trophic

discrimination factors associated with prey might also influ-

ence our d15NGlu– Phe data. Recent literature shows more

variation in amino acid-specific trophic discrimination factors

among organisms than previously described, probably result-

ing from differences in feeding ecology, physiology and as

discussed earlier, the balance of protein, fat and carbohydrates

in an organism’s diet [19,32–34]. Owing to the paucity of

species-specific trophic discrimination factors in the literature,

the extent to which variation in trophic discrimination factors

influenced the Hawaiian petrel’s prey and our d15NGlu–Phe

data are difficult to assess. If a change in trophic discrimi-

nation factors is responsible for the decline in d15NGlu– Phe
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between ancient and modern Hawaiian petrels, this would

imply that the prey of Hawaiian petrels changed over time.

While we do not know that a decline in trophic level was

the sole factor driving the observed decrease in Hawaiian

petrel d15NGlu – Phe, independent lines of evidence show a

decrease in the mean size of fishes in the NPO, a phenomenon

consistent with a trophic-level decline [35]. A trophic-level

decline occurring within a vast open ocean basin is indicative

of large-scale ecological change. Wiley et al. [15,36] did not

find a correlation between climate change indices (e.g.

El Niño Southern Oscillation) and our isotope chronologies.

Another major agent of ecological change in the NPO is

industrial fishing. Ecosystem responses to industrial fishing

in the open ocean are complex. Yet we know that, since the

1950s, the central NPO experienced a reduction in catch

rates of large fishes while smaller consumers began dominat-

ing the catch [35]. Further, the loss of large fishes can increase

the abundance of not only the next smaller size class but

organisms two orders of magnitude smaller, such that only

the micronekton and plankton are unaffected [37]. This

offers one scenario where ocean-wide effects of industrial fish-

ing could produce a trophic-level decline in the Hawaiian

petrel and probably in other oceanic predators.

Sherwood et al. [11] emphasized changes in nutrient

regimes within a large region of the NPO, the North Pacific

subtropical gyre. The low average d15NPhe of 1.9‰ for

Hawaiian petrels from Maui is consistent with a substantive

contribution of nitrogen fixation to the base of the food

web for the population of Hawaiian petrels that breeds on

Maui. Yet, even in the Maui population, d15NGlu 2 d15NPhe

values are consistent with a trophic decline and not with a

temporal increase in nitrogen fixation. Thus, a dietary shift,

most likely a trophic-level decline, affected Hawaiian petrels

broadly, regardless of where populations fed.

If indeed a trophic shift occurred in the food web of the

Hawaiian petrel, particularly if related to fisheries, the impli-

cations could be ecologically and economically far-reaching.

Fisheries have been described as a vast uncontrolled exper-

iment with unforetold ecological consequences [1], yet an
observation of a trophic-level shift implies changes to trophic

structure that can lead to deteriorating ecosystem function

[38]. Fishery-related alterations to open ocean food webs are

an international issue with implications for food supplies

and cultures [39,40]. As human population grows, increased

fishery production may spur further trophic-level shifts simi-

lar to that observed in our retrospective data. This possibility,

coupled with climate change, suggests an uncertain future for

the oceanic NPO [41]. Although our millennial-scale data do

not decisively implicate fisheries, they offer important evi-

dence of a tropic shift and a rare opportunity to gauge the

full magnitude of potential ecological stress by providing a

baseline prior to human intervention, a perspective that is

critical for predicting the future of marine ecosystems.
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